Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 153: 106470, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38422872

RESUMO

Previous ex vivo bone culture methods have successfully implemented polycarbonate (PC) bioreactors to investigate bone adaptation to mechanical load; however, they are difficult to fabricate and have been limited to a 5 mm maximum specimen height. The objective of this study was to validate a custom-made 3D printed MED610TM bioreactor system that addresses the limitations of the PC bioreactor and assess its efficacy in ex vivo bone culture. Twenty-three viable trabecular bone cores (10 mm height by 10 mm diameter) from an 18-month-old bovine sternum were cultured in MED610TM bioreactors with culture medium at 37 °C and 5% CO2 for 21-days. Bone cores were ranked based on their day 0 apparent elastic modulus (Eapp) and evenly separated into a "Load" group (n = 12) and a control group (n = 11). The Load group was loaded five times per week with a sinusoidal strain waveform between -1000 and -5000 µÎµ for 120 cycles at 2 Hz. Eapp was assessed on day 0, 8, and 21 using quasi-static tests with a -4000 µÎµ applied strain. Over 21-days, the Eapp of Load group samples tended to increase by more than double the control group (53.4% versus 20.9%) and no visual culture contamination was observed. This study demonstrated that bone organ culture in 3D printed MED610TM bioreactors replicated Eapp trends found in previous studies with PC bioreactors. However, further studies are warranted with a larger sample size to increase statistical power and histology to assess cell viability and bone mineral apposition rate.


Assuntos
Osso e Ossos , Osso Esponjoso , Animais , Bovinos , Módulo de Elasticidade , Reatores Biológicos , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...